Physicist's Dot Product: (dot product gives the angle) for \overrightarrow{u} and \overrightarrow{v} with 0 \leq \theta \leq \pi as the angle, then \overrightarrow{u} \cdot \overrightarrow{v} = \|\overrightarrow{u}\| \|\overrightarrow{v}\| \cos{\theta}
dot product: the length of projected vector times the length of base vector. (could be negative if pointing opposite dirrection)
|A|\cos{\theta} is the length of A projected to |B|
Property of Dot Product
Law of Cosines: C^2 = A^2 + B^2 - 2AB\cos{c} Scalar Projection: |comp_{\overrightarrow{u}}(v)| = \|proj_{\overrightarrow{u}}(v)\| = \frac{|\overrightarrow{u}\cdot \overrightarrow{v}|}{\|\overrightarrow{u}\|} Projection of Vectors: projection of \overrightarrow{v} onto \overrightarrow{u} is proj_{\overrightarrow{u}}(v) = (\cos{\theta} \cdot \|v\|) \cdot \frac{\overrightarrow{u}}{\|u\|} = \frac{\overrightarrow{u}\cdot \overrightarrow{v}}{\|\overrightarrow{u}\|^2}\cdot \overrightarrow{u}
Cross Product (\times): perpendicular (\perp) to all input vectors
obtained by solving system of equation of \overrightarrow{w} \cdot x = 0 | \forall x input (only particular solution are cross product, because there might be potentially infinite many solutions)
\overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{v} = \det \begin{pmatrix} \overrightarrow{i} \overrightarrow{j} \overrightarrow{k}\\ u_1 u_2 u_3\\ v_1 v_2 v_3\\ \end{pmatrix}
there are (at least) two vectors perpendicular to all input, let the first one be x, second one be y, by right hand rule, cross product must be in dirrection of z, which means cross product is not commutative
\overrightarrow{u} \times \overrightarrow{v} | v_i | v_j | v_k |
---|---|---|---|
u_i | 0 | k | -j |
u_j | -k | 0 | i |
u_k | j | -i | 0 |
Formal Determinant: \det \begin{pmatrix} \overrightarrow{i} \overrightarrow{j} \overrightarrow{k}\\ u_1 u_2 u_3\\ v_1 v_2 v_3\\ \end{pmatrix} = \overrightarrow{i} \det \begin{pmatrix} \overrightarrow{u_2} \overrightarrow{u_3}\\ \overrightarrow{v_2} \overrightarrow{v_3}\\ \end{pmatrix} - \overrightarrow{j} \det \begin{pmatrix} \overrightarrow{u_1} \overrightarrow{u_3}\\ \overrightarrow{v_1} \overrightarrow{v_3}\\ \end{pmatrix} + \overrightarrow{k} \det \begin{pmatrix} \overrightarrow{u_2} \overrightarrow{u_2}\\ \overrightarrow{v_2} \overrightarrow{v_2}\\ \end{pmatrix}
Determinant: for 2 by 2, \det \begin{pmatrix} a b\\ c d\\ \end{pmatrix} = ad - bc
Properties of Cross Product:
Anticommutative: \overrightarrow{u} \times \overrightarrow{v} = -(\overrightarrow{v} \times \overrightarrow{u})
Distributive: \overrightarrow{u} \times (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u} \times \overrightarrow{w}
Multiplication by Constant: c(\overrightarrow{u} \times \overrightarrow{v}) = (c \overrightarrow{u}) \times \overrightarrow{v} = \overrightarrow{u} \times (c \overrightarrow{v})
Zero Vector / Itself: \overrightarrow{u} \times \overrightarrow{0} = \overrightarrow{0} \times \overrightarrow{u} = 0 = \overrightarrow{v} \times \overrightarrow{v}
Scalar Triple Product: \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w}) = (\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}
Angle: \sin(\theta) = \frac{\|\overrightarrow{u} \times \overrightarrow{v}\|}{\|\overrightarrow{u}\|\|\overrightarrow{v}\|}
Area of Parallelgram: \|\overrightarrow{u} \times \overrightarrow{v}\| (\overrightarrow{u} \times \overrightarrow{v} is positive if \overrightarrow{u} rotate in positive dirrection to get \overrightarrow{v}, \overrightarrow{i} \times \overrightarrow{j} is positive. Since cross product is determinant is area.)
Torque: \tau = \overrightarrow{r} \times \overrightarrow{F} where \overrightarrow{r} is the radius and \overrightarrow{F} is the force.
Line: a point p = (x_0, y_0, z_0) and a dirrection vector \langle{a, b, c}\rangle, then a line is \begin{cases} x = x_0 + at\\ y = y_0 + bt\\ z = z_0 + ct\\ \end{cases} or \langle{x, y, z}\rangle = \langle{x_0, y_0, z_0}\rangle + t\langle{a, b, c}\rangle
or you can solve for t, then \begin{cases} t = \frac{x - x_0}{a}\\ t = \frac{y - y_0}{b}\\ t = \frac{z - z_0}{c}\end{cases}
symmetric equation: \frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}
Plane: \pm \overrightarrow{n} \cdot \overrightarrow{PQ} = 0
Angle between Two Plane: Angle (0 < \theta < \frac{\pi}{2}) between P_1 and P_2 with normal vectors n_1 and n_2 is \cos{\theta} = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{\|n_1\|\|n_2\|}
Distance Between Line (Q, \overrightarrow{v}) and point P is: \frac{\|\overrightarrow{QP} \times \overrightarrow{v}\|}{\|\overrightarrow{v}\|}
Distance between Plane (Q, \overrightarrow{n}) point P is: d = \|\text{proj}_n{\overrightarrow{QP}}\| = |\text{comp}_n \overrightarrow{QP}| = \frac{|\overrightarrow{QP} \cdot n|}{\|n\|}
Limit: limit exists if both side limit exists Continuous: limit exists and equal function value
Dot Product of Vector Valued Function: \overrightarrow{r_1} \cdot \overrightarrow{r_2} = f_1f_2 + g_1g_2 + h_1h_2
Cross Product Derivative: (\overrightarrow{r_1}(t) \times \overrightarrow{r_2}(t))' = \overrightarrow{r_1}(t) \times \overrightarrow{r_2}'(t) + \overrightarrow{r_1}'(t) \times \overrightarrow{r_2}(t)
In \mathbb{R}^2, \text{Arc Length} = \int_{x=a}^{x=b} \sqrt{(f'(x)^2 + 1)} dx In \mathbb{R}^3, \begin{align} \text{Arc Length} &= \int_{t=a}^{t=b} \sqrt{(f'(t))^2 + (g'(t))^2 + (h'(t))^2} dt\\ &= \int_{t=a}^{t=b} \|\overrightarrow{r}'(t)\| dt\\ \end{align}
Arc Length Function: function computes arc length from t=a to t=t given \overrightarrow{r}(t) is \S(t) = \int_a^t \|\overrightarrow{r}'(u)\| du.
\overrightarrow{T}(t) = \frac{\overrightarrow{r}'(t)}{\|\overrightarrow{r}'(t)\|} = \frac{\overrightarrow{r}'(t)}{\|\frac{dS}{dt}\|}
Curvature: \kappa(S) = \|\frac{d \overrightarrow{T}}{dS}\| = \|\overrightarrow{T'}(S)\| for \overrightarrow{r}(S) (parameterized by arc length S)
\kappa(t) = \frac{\|\overrightarrow{T'}(t)\|}{\|\overrightarrow{r'}(t)\|}
In \mathbb{R}^3: \kappa(t) = \frac{\|\overrightarrow{r}'(t) \times \overrightarrow{r}''(t)\|}{\|\overrightarrow{r}'(t)\|^3} = \frac{\|\overrightarrow{v} \times \overrightarrow{a}\|}{\|\overrightarrow{v}\|^3}, which means \|\overrightarrow{T}'(t)\| = \frac{\|\overrightarrow{r}'(t) \times \overrightarrow{r}''(t)\|}{\|\overrightarrow{r}'(t)\|^2}
In \mathbb{R}^2: \kappa(x) = \frac{|\frac{d^2y}{dx^2}|}{(1+(\frac{dy}{dx})^2)^{\frac{3}{2}}} = \frac{|y''(x)|}{\text{Arc Length}^3}
\overrightarrow{v} \cdot \overrightarrow{w} = 0 \implies \|\overrightarrow{v} \times \overrightarrow{w}\| = \|\overrightarrow{v}\|\|\overrightarrow{w}\|
Principal Unite Normal Vector: \overrightarrow{N}(t) = \frac{\overrightarrow{T}'(t)}{\|\overrightarrow{T}'(t)\|}
Binormal Vector: \overrightarrow{B}(t) = \overrightarrow{T}(t) \times \overrightarrow{N}(t)
Acceleration Components on Curve:
a_{\overrightarrow{T}} = \frac{\overrightarrow{T} \cdot \overrightarrow{a}}{\|\overrightarrow{T}\|} = \overrightarrow{T} \cdot \overrightarrow{a}
a_{\overrightarrow{N}} = \frac{\overrightarrow{N} \cdot \overrightarrow{a}}{\|\overrightarrow{N}\|} = \overrightarrow{N} \cdot \overrightarrow{a} = \frac{\|\overrightarrow{v} \times \overrightarrow{a}\|}{\|\overrightarrow{v}\|} = \sqrt{\|a\|^2 - a_{T}^2}
|F_{\text{centripital}}| = \frac{mv^2}{r}
Level Curve: level curve at z=c is the curve in R^2 of z = f(x, y). Contor Map: several labeled level curves on same coordinate axes (ie. multiple level curves in the same dirrection) Vertical Trace: making one independent (instead of dependent) variable constant
If z = f(x, y), the limit of f(x, y) as (x, y) approaches (a, b) is C, denoted \lim_{(x, y) \rightarrow (a, b)} f(x, y) = C provided that for all \epsilon so that when 0 < \text{dist}((x, y), (a, b)) < S, |f(x, y) - C| < S
Limit in 3D: if 0 \leq \text{distance}((x, y), (a, b)) < \delta \implies 0 \leq |f(x, y)-L| < \epsilon the limit of z = f(x, y) is \lim_{(x, y) \rightarrow (a, b)} f(x, y) = L
Find the Limit when Exists
Prove Limit DNE:
Table of Content