Lecture 014

Vector Field: a vector function \bar{F} : D \rightarrow \mathbb{R}^n where D is a domain in \mathbb{R}^n

Unit Vector Field: (\forall (x, y) \in D)(\|\bar{F}(x, y)\| = 1)

Gradient (Conservative) Vector Field: \nabla f(x, y, z) = \langle{f_x (x, y, z), f_y (x, y, z), f_z (x, y, z)}\rangle

Find potential formula: given \bar{F}(x, y) = \langle{P, Q}\rangle = \langle{f_x, f_y}\rangle.

  1. verify \frac{\partial f_x}{\partial y} = \frac{\partial f_y}{\partial x} (f_{xy} = f_yx) by verifying \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}
  2. find \int f_x dx = [something_1] + g(y) and \int f_y dy = [something_2] + h(x)
  3. find g(y), h(x) to make [something_1] + g(y) = [something_2] + h(x)
  4. the resulting function is potential function f

// QUESTION: gradient vector field is the one doesn't form loop (can be thought as potential)

Scalar Line Integral

Scalar Line Integral: given a curve C = \overrightarrow{r}(t) = \langle{x(t), y(t)}\rangle is a C^1-continuous function, and a scalar function f(x, y)

Vector Line Integrals

Piecewise smooth curve: piecewise function when each function is smooth.

Vector Line Integrals: Integrate field that are aligned to the tangent of a line. (a way to measure net flow of interest in a region of vector Field)

\begin{align*} \int_C F dS = \int_a^b F(r(t)) \cdot \overrightarrow{r'(t)} dt \end{align*}

Circulation and Flow

Circulation: Integrate field that are aligned to the normal of a closed circle. (closed curve form a loop) Flow: how much a vector is tangential to boundary (not a loop)

Work:

\begin{align*} &\int_C \overrightarrow{F} \cdot \overrightarrow{T} ds \tag{where $ds$ is tiny distance}\\ = &\int_C \overrightarrow{F} \cdot \frac{\overrightarrow{r}'(t)}{\|r'(t)\|} \|r'(t)\| dt\\ = &\int_C \overrightarrow{F} \cdot \overrightarrow{r}'(t) dt = \int_a^b \overrightarrow{F}(\overrightarrow{r}(t)) \cdot \overrightarrow{r}'(t) dt\\ = &\int_C \overrightarrow{F} \cdot \frac{d\overrightarrow{r}}{dt} dt\\ = &\int_C \overrightarrow{F} \cdot d \overrightarrow{r}\\ = &\int_C Pdx + Qdy\\ \end{align*}
\begin{align*} &\int_C \overrightarrow{F} \cdot d \overrightarrow{r}\\ = &\int_C \overrightarrow{F} \overrightarrow{r}'(t) dt\\ = &\int_C \langle{P, Q, R}\rangle \cdot \langle{\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}}\rangle dt\\ = &\int_C Pdx + Qdy + Rdz\\ \end{align*}

Fundamental theorem for line integrals: For any function and C^1 curve C. \int_C \nabla f \cdot dr = f(\overrightarrow{r}(b)) - f(\overrightarrow{r}(a)) where \overrightarrow{r}(t) for a \leq t \leq b is a piece-wise parameterization of curve C.

Independent path: a field is path-independent if \int_{C1}F \cdot dr = \int_{C2}F \cdot dr where C1, C2 with the same initial and terminal points.

Flux

Flux: For a curve C and a vector field F, flux is integrated field that are aligned to the normal of the curve. It is used to calculate fluid flow accross the curve.

\begin{align} &\int_C F \cdot N ds \tag{where $C$ is parameterized by $\overrightarrow{r}(t) = \langle{x(t), y(t)}\rangle$, $\overrightarrow{N}(t) = \frac{\overrightarrow{n}(t)}{\|\overrightarrow{n}(t)\|}$}\\ = &\int_a^b F \cdot \frac{n(t)}{\|n(t)\|} \|r'(t)\| dt \tag{where $n(t) = \langle{y'(t), -x'(t)}\rangle$}\\ = &\int_a^b F(r(t)) \cdot n(t) dt \tag{by $\|n(t)\| =\|r'(t)\| $ since $\|\langle{x', y'}\rangle\| = \|\langle{y', -x'}\rangle\|$}\\ = &\int_a^b \langle{P(r_x), Q(r_y)}\rangle \cdot \langle{y'(t), -x'(t)}\rangle dt\\ = &\int_C -Qdx + Pdy \tag{by $\langle{dx, dx}\rangle$ rotate to $\langle{dy, -dx}\rangle$}\\ \end{align}

Source-Free: If for all closed curves C on continuous vector field \overrightarrow{F} on an open connected domain, \oint_C \overrightarrow{F} \cdot \overrightarrow{N} dA = 0 (flux = 0), then \overrightarrow{F} is source-free.

Source-free: on simply connected domain, the followings are true

// TODO: carefully exam when green's theorem apply (with/without holes) at the bottom of 6.4 and 6.3

Video Explaining Divergence and Curl Video Explaining Flow and Flux

Curl

Curl: for vector field \overrightarrow{F} = \langle{P, Q, R}\rangle:

\begin{align*} \text{curl}(\overrightarrow{F}) = &\nabla \times \overrightarrow{F}\\ = &\det \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ P & Q & R\\ \end{vmatrix}\\ = &\langle{R_y - Q_z, P_z - R_x, Q_x - P_y}\rangle\\ \end{align*}

Divergence

Divergence

Divergence

Divergence: the divergence for \overrightarrow{F} = \langle{P, Q, R}\rangle is the scalar field: Divergence measure how much water flow out than flow in at given point.

\begin{align*} \text{div}(\overrightarrow{F}) &= P_x + Q_y + R_z\\ &= \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\\ &= \nabla \cdot \overrightarrow{F} \end{align*}

Green's Theorem

Simply-connected: connected piece with no hole. If you make a circle (if possible) and fill in the circle, the picture would not change.

Use of notation:

Green's Theorem for Calculating Circulation

Green's Theorem for non-conservative: Let D \in \mathbb{R}^2 be open, simply connected region with boundary \partial D \in \mathbb{R}^2. The boundary \partial D is piecewise C^1 smooth.

Let \overrightarrow{F} = \langle{P, Q}\rangle \in \mathbb{R}^2 (may not be conservative) Then:

\begin{align*} &\oint_{\partial D = C} \overrightarrow{F} \cdot d \overrightarrow{r} \tag{assumed counterclockwise}\\ (= &\oint_C Pdx + Qdy)\\ = &\iint_D (Q_x - P_y) dt\\ = &\iint_D (Q_x - P_y) dA\\ = &\iint_D ((Q_x - P_y) \overrightarrow{k}) \cdot \overrightarrow{k} dA \tag{if in 2D}\\ = &\iint_D \langle{0, 0, Q_x - P_y}\rangle \cdot \overrightarrow{k} dA\\ = &\iint_D \text{curl}(F) \cdot \overrightarrow{k} dA \tag{by curl in the middle cancel neighbors out}\\ = &\iint_D \text{curl}(F) \cdot \langle{0, 0, 1}\rangle dA\\ \end{align*}

Green's Theorem Illustration

Green's Theorem Illustration

Green's Theorem for not simply-connected: Let D \in \mathbb{R}^2 be region with n \in \mathbb{N} many holes, then green's theorem hold.

Green's Theorem to Calculate Flux

Flux version of Green's Theorem: Let D \in \mathbb{R}^2 be open, simply connected region with boundary C \in \mathbb{R}^2. The boundary C is piecewise C^1 smooth. Let \overrightarrow{F} = \langle{P, Q}\rangle \in \mathbb{R}^2 (may not be conservative) Then \oint_C \overrightarrow{F} \cdot \overrightarrow{N} dA = \iint_D \text{div}(\overrightarrow{F}) dA = \iint_D P_x + Q_y dA

Proof:

\begin{align*} &\oint_C \overrightarrow{F} \cdot \overrightarrow{N} dA\\ = &\oint_C \langle{P, Q}\rangle \cdot \langle{y', -x'}\rangle dt\\ = &\oint_C Pdy - Qdx\\ = &\oint_C -Qdx + Pdy\\ = &\iint_D (P_x - (-Q_y)) dt \tag{by ordinary Green's Theorem}\\ = &\iint_D (P_x + Q_y) dA\\ = &\iint_D \text{div}(\overrightarrow{F}) dA \tag{by curl in the middle cancel neighbors out}\\ \end{align*}

Green's Theorem: \oint_C F \cdot N ds = \iint_D \text{div} F dA (geometrically, the sum of divergence at each point in a region is the sum of divergence at border of the region which is exactly the flux)

Laplacian

Different Formulas

Different Formulas

Laplacian (Laplace operator): for scalar field f, \Delta is a second-order differential operator in Euclidean space defined as the divergence (\nabla \cdot) of the gradient (\nabla f)

\begin{align*} \Delta f = \nabla^2 f = &\text{div}(\nabla f)\\ =& \text{div}(\langle{f_x, f_y, f_z}\rangle)\\ =& f_{xx} + f_{yy} + f_{zz}\\ =& \sum_{i = 1}^n \frac{\partial^2 f}{\partial x_i^2} \end{align*}

Harmonic Vector Field

Harmonic (no complex disturbance, simple flow in one direction): f is harmonic iff \Delta f = \nabla^2 f = 0

curl-free, divergence-free, and harmonic component from Helmholtz-Hodge decomposition

curl-free, divergence-free, and harmonic component from Helmholtz-Hodge decomposition

Helmholtz-Hodge decomposition: decompose vector field into curl-free, divergence-free, and harmonic component.

Divergence of the Curl: Assume \overrightarrow{F} \in \mathbb{R}^3 is C^2 smooth vector field, then \begin{cases} \text{div curl}(\overrightarrow{F}) = 0 & (\text{prove by expansion, can be used to verify existence of } \overrightarrow{F})\\ \nabla \cdot (\nabla \times \overrightarrow{F}) = 0\\ \end{cases}

Summary

Surface Integral

r(u, v) = \langle{x(u, v), y(u, v), z(u, v)}\rangle

Smooth Surface: S parameterized by \overrightarrow{r}(u, v) is a smooth surface provided that r_u, r_v exists and r_u \times r_v \neq 0 for any value (u, v)

Surface Area: \overrightarrow{r}(u, v) for (u, v) \in D is a smooth surface, then the surface area of S is \iint_D \|\overrightarrow{r}_u \times \overrightarrow{r}_v\| dA

Scalar Surface Integral:

\begin{align*} &\iint_S f(x, y, z) dS\\ = & \iint_D f(\overrightarrow{r}(u, v)) \|\overrightarrow{r}_u \times \overrightarrow{r}_v\| dA \tag{by $dS = \|\overrightarrow{r}_u \times \overrightarrow{r}_v\| dA$}\\ \end{align*}

Vector Field Surface Flux Integral: where S surface need to be smooth and orientable

\begin{align*} &\iint_S \overrightarrow{F} \cdot dS\\ = &\iint_S \overrightarrow{F} \cdot \overrightarrow{N} dS\\ = &\iint_S \overrightarrow{F} \cdot \frac{\overrightarrow{r}_u \times \overrightarrow{r}_v}{\|\overrightarrow{r}_u \times \overrightarrow{r}_v\|} dS \tag{where $\overrightarrow{r}_u = \frac{\partial \overrightarrow{r}}{\partial u}, \overrightarrow{r}_v = \frac{\partial \overrightarrow{r}}{\partial v}$}\\ = &\iint_S \overrightarrow{F} \cdot (\overrightarrow{r}_u \times \overrightarrow{r}_v) dA \tag{by $dS = \|\overrightarrow{r}_u \times \overrightarrow{r}_v\| dA$}\\ \end{align*}

Stroke's Theorem: generalization of flux version of Green's Theorem:

\begin{align*} &\int_C \overrightarrow{F} \cdot dr\\ = &\iint_S \text{curl}\overrightarrow{F} \cdot dS\\ = &\iint_S \text{curl}\overrightarrow{F} \cdot \overrightarrow{N} dS\\ = &\iint_S \text{curl}\overrightarrow{F} \cdot \frac{\overrightarrow{r}_u \times \overrightarrow{r}_v}{\|\overrightarrow{r}_u \times \overrightarrow{r}_v\|} \|\overrightarrow{r}_u \times \overrightarrow{r}_v\| dS\\ = &\iint_S \text{curl}\overrightarrow{F} \cdot (\overrightarrow{r}_u \times \overrightarrow{r}_v) dA\\ \end{align*}

Table of Content