Lecture 001

Parametric Curves

Eliminating Variables

Normally: don't forget the domain t Cos-and-Sin: use \cos{t}^2 + \sin(t)^2 = 1

\begin{cases} x(t) = r\cos(t) \\ y(t) = r\sin(t) \end{cases}

is a parameterization of the circle x^2 + y^2 = r^2

Solving the Tangent Line

Note that the solution might be one-sided (ie. limit does not exist) You need to be careful of the domain of output rectangular equation.

Hyperbolic sine / cosine

sinh vs sin

sinh vs sin

cosh vs cos

cosh vs cos

\begin{cases} x = \cosh{t} = \frac{e^t + e^{-t}}{2} \\ y = \sinh{t} = \frac{e^t - e^{-t}}{2} \end{cases}
\cosh^2{t} - sinh^2{t} = 1

d2y/dx2

d2y/dx2

Table of Content