Lecture 001
Parametric Curves
Eliminating Variables
Normally: don't forget the domain t
Cos-and-Sin: use \cos{t}^2 + \sin(t)^2 = 1
\begin{cases}
x(t) = r\cos(t) \\
y(t) = r\sin(t)
\end{cases}
is a parameterization of the circle x^2 + y^2 = r^2
Solving the Tangent Line
Note that the solution might be one-sided (ie. limit does not exist)
You need to be careful of the domain of output rectangular equation.
Hyperbolic sine / cosine
\begin{cases}
x = \cosh{t} = \frac{e^t + e^{-t}}{2} \\
y = \sinh{t} = \frac{e^t - e^{-t}}{2}
\end{cases}
\cosh^2{t} - sinh^2{t} = 1