It make sense to have an interval of the form I = \left[X_{\min} - \epsilon, X_{\min}\right]
Note that confidence interval is under the frequentist approach, so the unknown parameter (a, \epsilon) is a deterministic quantity. But the interval is constructed based on data, so the interval itself (X_{\min}) is random, i.e., the two endpoints of the interval are random variables.
So the bound is I = \left[X_{\min} - (1 - 0.05^{1/n}), X_{\min}\right]
MAP
Now we view parameter a as a random variable A (assuming p.d.f. of A is f_A(a) = \frac{20e^{20a}}{1-e^{-20}} if 0 \leq a \leq 1) rather than deterministic. So we observe data X_i \sim \text{Uniform}(A, 1) (for i = \{1, ..., n\})
We maximize the posterior as following
\begin{align*}
f_{a | X_{1:n}=t_{1:n}}(a) =& \frac{f_{X_{1:n}|A=a}(t_{1:n})f_A(a)}{f_{X_{1:n}}(t_{1:n})}\\
=& \begin{cases}
\frac{\frac{1}{(1-a)^n}\frac{20e^{20a}}{1-e^{-20}}}{f_{X_{1:n}}(t_{1:n})} & \text{if } 0 \leq a \leq \min(t_1, ..., t_n)\\
0 & \text{otherwise}\\
\end{cases}\\
\arg\max_a f_{a | X_{1:n}=t_{1:n}}(a) =& \arg\max_{0 \leq a \leq \min(t_1, ..., t_n)} \frac{e^{-20a}}{(1-a)^n} \tag{the maximizing bound for $a$ is important here}\\
\end{align*}
Minimum Mean Square Error (MMSE) Estimation
Notice that when \hat{T}_{map} = \frac{x/t^2 + \mu/\sigma^2}{1/t^2} + \frac{1}{\sigma^2} and we see Pr\{Error\} = Pr\{\frac{x/t^2 + \mu/\sigma^2}{1/t^2} + \frac{1}{\sigma^2} \neq T\} = 1. We are certain the estimation is wrong because it is continuous. We need a better way to capture error.
Mean Square Error (MSE)
The error for estimator \hat{T}(X) is:
E[(\hat{T}(X) - T)^2]
Note that X, T are both random variables.
Minimum mean square error (MMSE) estimator
Given parameter T and data X = k
Theorem: \hat{T}_{MMSE}(X=k) = E[T | X = k] = \int_{-\infty}^\infty t f_{T | X = k}(t) dt
Instead of finding the max of posterior, we find the expectation of posterior.
Minimize Min Squared Error: Find \hat{T}(\cdot) to minimize E[(\hat{T}(X) - T)^2].
\begin{align*}
\hat{T}_{MMSE}(X=x) =& E[T | X = x]\\
=& \int_{-\infty}^\infty t f_{T | X = x}(t) dt\\
=& \int_{-\infty}^\infty t \frac{p_{T, X}(t, x)}{p_X(x)} dt\\
=& \int_{-\infty}^\infty t \frac{p_{T, X}(t, x)}{\int_{-\infty}^\infty p_{T, X}(t, x) dt} dt\\
=& \int_{-\infty}^\infty t \frac{p_{X|T=t}(x)p_T(t)}{\int_{-\infty}^\infty p_{X|T=t}(x)p_T(t) dt} dt\\
=& \int_{-\infty}^\infty t \frac{Pr\{X = x | T = t\} f_T(t)}{Pr\{X = x\}} dt\\
=& \int_{-\infty}^\infty t \frac{Pr\{X = x | T = t\} f_T(t)}{\int_{-\infty}^\infty Pr\{X = x | T = t\} f_T(t) dt} dt\\
\end{align*}
MAP vs. MMSE: MAP minimize Pr\{Error\} therefore only suitable for parameter in finite set. MMSE is suitable for parameter in infinite set (continuous) whereas MAP is suitable for parameter in finite set.
Often we can categorize a infinite set of parameter into discrete categories. In this case, we consider the parameter to be finite
However, in reality \hat{T}_{MMSE}(X) is a random variable where data X is random. Therefore we need to condition on X = k so that the random variable can be deterministic.
\arg \min_{\hat{T}(k)} E[(\hat{T}(k)-T)^2 | X = k] = E[T | X = k]