In \mathbb{R}^2, \text{Arc Length} = \int_{x=a}^{x=b} \sqrt{((\frac{dy}{dx})^2 + (\frac{dy}{dy})^2)} dx = \int_{x=a}^{x=b} \sqrt{(f'(x)^2 + 1)} dx
In \mathbb{R}^3, if \overrightarrow{r}(t) = \langle{f(t), g(t), h(t)}\rangle, then \begin{align} \text{Arc Length} &= \int_{t=a}^{t=b} \sqrt{(f'(t))^2 + (g'(t))^2 + (h'(t))^2} dt\\ &= \int_{t=a}^{t=b} \|\overrightarrow{r}'(t)\| dt\\ \end{align}
Arc Length Function: function computes arc length from t=a to t=t given \overrightarrow{r}(t) is S(t) = \int_a^t \|\overrightarrow{r}'(u)\| du.
Re-parametrizing by arc length: ensure travel 1 unit time per unit length
Principal Unit Tangent Vector:
in terms of t: \overrightarrow{T}(t) = \frac{\overrightarrow{r}'(t)}{\|\overrightarrow{r}'(t)\|} = \frac{\overrightarrow{r}'(t)}{\|\frac{dS}{dt}\|}
in terms of S:...
because it is unit vector T \perp T' because \|T\| = 1
// TODO: study curvature Curvature: \kappa(S) = \|\frac{d \overrightarrow{T}}{dS}\| = \|\overrightarrow{T'}(S)\| for \overrightarrow{r}(S) (parameterized by arc length S)
\kappa(t) = \frac{\|\overrightarrow{T'}(t)\|}{\|\overrightarrow{r'}(t)\|}
In \mathbb{R}^3: \kappa(t) = \frac{\|\overrightarrow{r}'(t) \times \overrightarrow{r}''(t)\|}{\|\overrightarrow{r}'(t)\|^3} = \frac{\|\overrightarrow{v} \times \overrightarrow{a}\|}{\|\overrightarrow{v}\|^3}, which means \|\overrightarrow{T}'(t)\| = \frac{\|\overrightarrow{r}'(t) \times \overrightarrow{r}''(t)\|}{\|\overrightarrow{r}'(t)\|^2}
In \mathbb{R}^2: \kappa(x) = \frac{|\frac{d^2y}{dx^2}|}{(1+(\frac{dy}{dx})^2)^{\frac{3}{2}}}
Note that T' \perp T always hold because \|T\| = 1 implies that vector T is constrainted in a circle, therefore any change is orthogonal to it.
On Orthogonal:
\|\overrightarrow{v}\| = \overrightarrow{v} \cdot \overrightarrow{v} = C_{\text{constant}} \implies \overrightarrow{v} \cdot \overrightarrow{v}' = 0 (this is the case for all unit vectors)
\overrightarrow{v} \cdot \overrightarrow{w} = 0 \implies \|\overrightarrow{v} \times \overrightarrow{w}\| = \|\overrightarrow{v}\|\|\overrightarrow{w}\|
Principal Unit Normal Vector: \overrightarrow{N}(t) = \frac{\overrightarrow{T}'(t)}{\|\overrightarrow{T}'(t)\|}
Binormal Vector: \overrightarrow{B}(t) = \overrightarrow{T}(t) \times \overrightarrow{N}(t)
Acceleration Components on Curve:
(\exists a_{\overrightarrow{T}}, a_{\overrightarrow{N}} \in \mathbb{R}) (\overrightarrow{a} = a_{\overrightarrow{T}}\overrightarrow{T} + a_{\overrightarrow{N}}\overrightarrow{N})
a_{\overrightarrow{T}} = \frac{\overrightarrow{T} \cdot \overrightarrow{a}}{\|\overrightarrow{T}\|} = \overrightarrow{T} \cdot \overrightarrow{a}
a_{\overrightarrow{N}} = \frac{\overrightarrow{N} \cdot \overrightarrow{a}}{\|\overrightarrow{N}\|} = \overrightarrow{N} \cdot \overrightarrow{a} = \frac{\|\overrightarrow{v} \times \overrightarrow{a}\|}{\|\overrightarrow{v}\|} = \sqrt{\|a\|^2 - a_{T}^2}
Theorem: a_{\overrightarrow{N}} = \overrightarrow{N} \cdot \overrightarrow{a} = \frac{\|\overrightarrow{v} \times \overrightarrow{a}\|}{\|\overrightarrow{v}\|} = \sqrt{\|\overrightarrow{a}\|^2 - a_{\overrightarrow{T}}^2} // TODO: why is this true
Kepler's Law of Planetory Motion:
Law of Ellipse: planetary motion is ellipse
Equal Area: if area are equal, time equal
Law of Harmony: T_{time/year}^2 = D_{average distance from sun/AU}^3
F_{\text{centripital}} = \frac{mv^2}{r} // TODO: find a problem
// WARNING: \overrightarrow{N}(t) = \frac{\overrightarrow{T}'(t)}{\|\overrightarrow{T}'(t)\|} = \frac{r''(t)}{\|r''(t)\|} only when \|r'\| is constant.
Table of Content