Cross Product (\times): perpendicular (\perp) to all input vectors
obtained by solving system of equation of \overrightarrow{w} \cdot x = 0 | \forall x input (only particular solution are cross product, because there might be potentially infinite many solutions)
\overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{v} = \det \begin{pmatrix} \overrightarrow{i} \overrightarrow{j} \overrightarrow{k}\\ u_1 u_2 u_3\\ v_1 v_2 v_3\\ \end{pmatrix}
there are (at least) two vectors perpendicular to all input, let the first one be x, second one be y, by right hand rule, cross product must be in direction of z, which means cross product is not commutative
Formal Determinant:
Determinant: for 2 by 2, \det \begin{pmatrix} a b\\ c d\\ \end{pmatrix} = ad - bc
Properties of Cross Product:
Anticommutative: \overrightarrow{u} \times \overrightarrow{v} = -(\overrightarrow{v} \times \overrightarrow{u})
Distributive: \overrightarrow{u} \times (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \times \overrightarrow{v} + \overrightarrow{u} \times \overrightarrow{w}
Multiplication by Constant: c(\overrightarrow{u} \times \overrightarrow{v}) = (c \overrightarrow{u}) \times \overrightarrow{v} = \overrightarrow{u} \times (c \overrightarrow{v})
Zero Vector / Itself: \overrightarrow{u} \times \overrightarrow{0} = \overrightarrow{0} \times \overrightarrow{u} = 0 = \overrightarrow{v} \times \overrightarrow{v}
Scalar Triple Product: \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w}) = (\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}
Angle: \sin(\theta) = \frac{\|\overrightarrow{u} \times \overrightarrow{v}\|}{\|\overrightarrow{u}\|\|\overrightarrow{v}\|}
Area of Parallelgram: \|\overrightarrow{u} \times \overrightarrow{v}\| by applying the above formula
Torque: \tau = \overrightarrow{r} \times \overrightarrow{F} where \overrightarrow{r} is the radius and \overrightarrow{F} is the force.
Table of Content