Before preceded, you need to understand:
Norm: a non-negative quantity of elements of a vector space
\|\overrightarrow{u}\| \geq 0
\|\overrightarrow{u}\| \iff u = \overrightarrow{0}
\|c\overrightarrow{u}\| = \|c\| \cdot \|\overrightarrow{u}\|
\|\overrightarrow{u}\| + \|\overrightarrow{v}\| \geq \|\overrightarrow{u} + \overrightarrow{v}\|
Euclidean: length preserved by rotation, translation, reflection of space. \|u\| := \sqrt{u_1^2 + ... + u_n^2} only if the vector is in orthonormal basis.
L^2 norm: magnitude of a function. \|f\| := \sqrt{\int_a^b f(x)^2 dx} for [a, b] is the function's domain
L^2 dot (inner) product: how well two functions "line up". \langle f, g \rangle := \int_a^b f(x)g(x) dx
Advantage of Linear Maps:
Computational Cheap
Capture Geometric Transformation (rotation, translation, scaling)
All maps can be approximated as linear maps using Taylor's Series
Derivative and Integrals are Linear: Notes on Linear Transformations
Orthonormal Basis: e_1 \cdot e_2 = \langle{e_i, e_j}\rangle = \begin{cases}1 \text{ if } i = j\\ 0 \text{ otherwise}\\\end{cases}
Approximated Signal: can be expressed using fourier basis of sinusoids.
Fourier Analysis (Decomposition): the process of transforming the original function (signal) into fourier series.
Fourier Composition: compose fourier series into approximated signal.
// QUESTION: do we use Discrete Time Fouier Series instead? // QUESTION: is Fourier Decomposition the same as Fourier Analysis?
Definition: \sqrt{\det(u, v, u \times v)} = \|u\|\|v\|\sin \theta, u \times v := \begin{bmatrix} u_2v_3 - u_3v_2\\ u_3v_1 - u_1v_3\\ u_1v_2 - u_2v_1\\ \end{bmatrix}
Lagrange's Identity: u \times (v \times w) = v(u \cdot w) - w(u \cdot v)
Gradient: \triangledown f(x) \cdot u = D_u f(x)
Example 1: taking partial derivative \frac{\partial}{\partial u_k} of f := u^T v for 1 \leq k \leq n
Example 2: taking gradient of functions that takes functions as input: F(f) := \langle f, g \rangle := \int_a^b f(x)g(x) dx. We get \triangledown F = g
Divergence: \triangledown \cdot X := \sum_{i = 1}^n \frac{\partial X_i}{\partial u_i} where \triangledown = (\frac{\partial}{\partial u_1}, ..., \frac{\partial}{\partial u_n}), X(u) = (X_1(u), ..., X_n(u))
Curl: \triangledown \times X := \begin{bmatrix} \frac{\partial X_3}{\partial u_2} - \frac{\partial X_2}{\partial u_3}\\ \frac{\partial X_1}{\partial u_3} - \frac{\partial X_3}{\partial u_1}\\ \frac{\partial X_2}{\partial u_1} - \frac{\partial X_1}{\partial u_2}\\ \end{bmatrix} where \triangledown = (\frac{\partial}{\partial u_1}, \frac{\partial}{\partial u_2}, \frac{\partial}{\partial u_3}), X(u) = (X_1(u), X_2(u), X_3(u))
Laplacian: Operator used to encode concavity (concave up) for multivariable equation. Used in
Fourier transform, frequency decomposition
used to define model in partial differential equations (Laplace, heat, wave equation)
characteristics of geometry
Table of Content