Intersection(\cap): common elements between two sets
A\cap B = \{x \in U | x\in A \text{ and } x\in B\}, let U be Universal set
A\cap B = \{x \in A | x\in B\}
A\cap B = \{x \in B | x\in A\}
if A\cap B = \emptyset then A and B is called disjoint
Union(\cup): A\cup B = \{x\in A \text{ or } x\in B\}
Difference(- or $\backslash $): A\backslash B = \{x\in U | x\in A \text{ and } x\notin B\}=\{x\in A | x\notin B\}
Complement(A^\complement or \overline{A}, or A^\mathsf{c}): \overline{A}=\{x\in U | x\notin A\}=U\backslash A TODO: :question: can I wrote as ^\complement?
Index set: i\in I in which i denotes the index of set of all possible variation of A.
\{A_i\}_{i\in I} = \{A_i | i\in I\} is an family of sets indexed by I
a set of set is called family
you can use this to define A_i = \{i, -i\}
Indexed intersections(\bigcap): \bigcap_{i\in I}A_i = \{x\in U | \text{ for all } i\in I, x\in A_i\}
Indexed unions(\bigcup): \bigcup_{i\in I}A_i = \{x\in U | \text{ for some } i\in I, x\in A_i\}
Cartesian product(A\times B): A\times B = \{(a, b) | a\in A \text{ and } b\in B\}
our Cartesian plane is \mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x,y) | x, y \in \mathbb{R}\}
A \times \emptyset = \emptyset \times A = \emptyset for any A
x,y\in \mathbb{Z} \lnot (x, y)\in \mathbb{Z}^2
Because (A \times B) \times C = \{((a, b), c) | a\in A, b\in B, c\in C\} A\times (B\times C) = \{(a, (b, c)) | a\in A, b\in B, c\in C\} so the above is the same thing as A\times B\times C = \{(a, b, c) | a\in A, b\in B, c\in C\} because no information is lost (the information is tuples or triples are the direction of the operation.)
s.t.
for such that
holds
means it yields true
Table of Content