Lecture 003

Continue on Notation

Intersection(\cap): common elements between two sets

Union(\cup): A\cup B = \{x\in A \text{ or } x\in B\}

Difference(- or $\backslash $): A\backslash B = \{x\in U | x\in A \text{ and } x\notin B\}=\{x\in A | x\notin B\}

Complement(A^\complement or \overline{A}, or A^\mathsf{c}): \overline{A}=\{x\in U | x\notin A\}=U\backslash A TODO: :question: can I wrote as ^\complement?

Index set: i\in I in which i denotes the index of set of all possible variation of A.

Indexed intersections(\bigcap): \bigcap_{i\in I}A_i = \{x\in U | \text{ for all } i\in I, x\in A_i\}

Indexed unions(\bigcup): \bigcup_{i\in I}A_i = \{x\in U | \text{ for some } i\in I, x\in A_i\}

Cartesian product(A\times B): A\times B = \{(a, b) | a\in A \text{ and } b\in B\}

Because (A \times B) \times C = \{((a, b), c) | a\in A, b\in B, c\in C\} A\times (B\times C) = \{(a, (b, c)) | a\in A, b\in B, c\in C\} so the above is the same thing as A\times B\times C = \{(a, b, c) | a\in A, b\in B, c\in C\} because no information is lost (the information is tuples or triples are the direction of the operation.)

Logic and Proofs

s.t. for such that holds means it yields true


Table of Content